qdrant_client.local.distances 模块¶
- 类 ContextQuery(context_pairs: list[ContextPair])[source]¶
基类:
object
- 类 DiscoveryQuery(target: list[float], context: list[ContextPair])[source]¶
基类:
object
- 类 DistanceOrder(value)[source]¶
基类:
str
,Enum
一个枚举。
- BIGGER_IS_BETTER = 'bigger_is_better'¶
- SMALLER_IS_BETTER = 'smaller_is_better'¶
- 类 RecoQuery(positive: Optional[list[list[float]]] = None, negative: Optional[list[list[float]]] = None, strategy: Optional[RecommendStrategy] = None)[source]¶
基类:
object
- calculate_context_scores(query: ContextQuery, vectors: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], distance_type: Distance) ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]] [source]¶
- calculate_discovery_ranks(context: list[ContextPair], vectors: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], distance_type: Distance) ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]] [source]¶
- calculate_discovery_scores(query: DiscoveryQuery, vectors: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], distance_type: Distance) ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]] [source]¶
- calculate_distance(query: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], vectors: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], distance_type: Distance) ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]] [source]¶
- calculate_distance_core(query: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], vectors: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], distance_type: Distance) ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]] [source]¶
计算与核心相同的内部距离,而不是最终显示的距离
- calculate_recommend_best_scores(query: RecoQuery, vectors: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], distance_type: Distance) ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]] [source]¶
- calculate_recommend_sum_scores(query: RecoQuery, vectors: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], distance_type: Distance) ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]] [source]¶
- cosine_similarity(query: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], vectors: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]]) ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]] [source]¶
计算查询向量与一组向量之间的余弦距离 :param query: 查询向量 :param vectors: 用于计算距离的向量组
- 返回:
距离数组
- distance_to_order(distance: Distance) DistanceOrder [source]¶
将距离转换为排序顺序 :param distance: 要转换的距离
- 返回:
排序顺序
- dot_product(query: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], vectors: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]]) ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]] [source]¶
计算查询向量与一组向量之间的点积 :param query: 查询向量。 :param vectors: 用于计算距离的向量组
- 返回:
距离数组
- euclidean_distance(query: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], vectors: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]]) ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]] [source]¶
计算查询向量与一组向量之间的欧氏距离 :param query: 查询向量。 :param vectors: 用于计算距离的向量组
- 返回:
距离数组
- manhattan_distance(query: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]], vectors: ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]]) ndarray[tuple[int, ...], dtype[Union[bool, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64, longdouble]]] [source]¶
计算查询向量与一组向量之间的曼哈顿距离 :param query: 查询向量。 :param vectors: 用于计算距离的向量组
- 返回:
距离数组